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Rezumat. Autorii au elaborat doud modele matematice similare pentru caracterizarea cuplajului termic tranzitorin
in curgeri peste plici plane de grosime finitd. Variajiile temporale sunt induse de modificdri tip treaptd in
temperatura sau fluxul termic impuse la fafa inferioard a placii. Solufionarea ecuatiilor de guvernare s-a cfectuat
prin metoda integrald cu legi de variatie a temperaturii in placa si in fluid adaptabile in timp la conditiile limitd
instantanee. Modelele matematice au fost comparate cu alte solufii matematice raportate in literaturd pentru
regimuri stafionare, rezultand diferente de maxim. Legile de variafie a vitezei §i temperaturii au permis calculul
entropiei instantanee generale in sistem prin disipare vdscoasd §i conducfic termicd.

NOMENCLATURE

A = alu

 fluid and plate diffusivity ratio

C - proportionality factor, eq. (20) (m')

E - plate thickness (m)

E. = E [C?,dimensionless plate thickness

B — convective heat transfer coefficient (W-m 2K ™)
kg - fluid/plate thermal conductivity (W-m™ K™

g - contact surface heat flux (v = 0) (W-m™)
g+ — non-dimensional heat flux [eq. (14)]

Pr - fluid Prandtl number

S - entropy (Wkg "' K™

T - fluid temperature within the thermal boundary layer
(K)

T, - platc temperature (K)

T, - freestream temperature (K)

Ty, ~— plate temperature at y = -E (K)

u  ~ fluid velocity in x-direction (m-s™')

U, - freestream velocity (m's™)
X« = x/C*dimensionless coordinate

y+ = v/E,dimensionless coordinate

Greek symbols

f = »/38,,dimensionless coordinatc
8 = hydrodynamic boundary layer thickness (m)
&; = thermal boundary layer thickness (m)

n = »/8, dimensionless coordinate
8 =(Tr-T.)/T,-T.)
0, = (T-T.)(5,-T.)
= (G~ )HL~L.)

1

9y

Indices:

55 — steady state
p —relative to the plate
s —relative to the contact surface (y = 0)

1. INTRODUCTION

Most of the previous works on heat convection in
parallel flows over bodies use various boundary
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conditions at the contact surface. In all such cascs, the
plate thermal resistance is not encountered in calculus,
although heat transfer may be highly influenced by the
impact body geometry and material. Moreover, in
practical applications, it is most probably that the
boundary conditions are known at the accessible
surfaces, i.c. the ones that are not in contact with the
fluid flow. Use of common measuring instruments at the
contact surface between the fluid and the body would
clearly disturb the boundary layers and thus rendering
the measurements to be errcneous.

In the present paper, the authors report results that
pertain to the dynamics of a parallel laminar flow over a
finite thickness flat plate. The plate suddenly comes in
contact with a thermostat type body or a constant
surface heat flux source, inducing thus temporal
variations in the heat flux exchanged with the fluid.
Previously developed mathematical models are used for
this purpose [1, 2]. Although an extended parameter
analysis has been performed, only a few illustrative
cascs are presented here: water or air flows over plates
made of steel or PVC. Nevertheless, the models may be
used for any other fluid-solid combination provided that
their thermophysical properties still comply with the
model assumptions. Figures la and 1b present the
schematic of the physical systems considered in this
study. An incompressible fluid flows under laminar
conditions parallel with a flat plate.

The plate thickness £ is assumed much smaller than
its length. The fluid has a constant temperature 7, and a
constant velocity U, as there are no pressure gradients
in the freestream. At a certain moment, considered initial,
a constant temperature 7y # 7, (Fig. la) or a constant
surface heat flux g, (Fig. 1b) is imposed on the back
surface of the plate. As the flow is constant, the
hydrodynamic boundary layer thickness §(v) and
velocity profile u(x, y) are also invariable with time.
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Tp=const.

Fig. la. Schematic representation of the physical system for

T,(#20)=const.
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Fig. 1b. Schematic representation of the physical system for
.., (£ 20)=const.

When the plate is penctrated by the heat flux (ie., a
temperature gradient reaches the upper surface), the
thermal boundary layer grows, having an instantaneous
thickness §, (x,r) and an instantancous temperature profile

T(.\-,y,r) ;
within the impact plate is different for the penetration

phase (dotted red line) as opposed to the afler-penetration
phase (solid red line).

The temperature instantaneous distribution

2. CONSERVATION EQUATIONS

Exact analytical solutions are often impossible to
find when dealing with transient phenomena. On the
other hand, where transient effects can be incorporated
with similarity methods for example, the resulting
solutions may impose particular relationships between
variables. Because of these reasons, the authors have
chosen the semi-analytical method of Karman-
Pohlhausen. Equations for momentum and energy
conservation in their integral and differential forms
were used with temporally adaptive profiles for fluid
and temperature to obtain governing equations for the
thermal boundary layer response [1, 2). The problem
was solved under the following general assumptions: (i)
incompressible laminar flow; (ii) constant fluid and
solid thermophysical properties; (iii) negligible viscous
heating; (iv) negligible body forces in comparison to
viscous forces; (v) one-dimensional conduction and no
heat sources within the solid; (vi) §, <&. The last

assumption restricts the models to fluids with Prandtl
numbers greater than about unity. However, related
studies indicated reasonable errors for Pr= 0,7 [3].
Under stationary flow but transient heat transfer
conditions, the conservation equations have the
differential and integrals forms included in the table
below. Within the solid, the onc-dimensional transicnt
conduction is modelled by the diffusion equation.

Differential conservation equations

éu v
e (1)
ax &y
cu du a-t
H—+Vy—=V _: (2)
o Ay gyt
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T:’ =a,— (4)
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Integral conservation equations
—Iu u-U dy -V gi{ ()
ay =0
2i(r-1.) Fedfirper e ) ©
ot E ox 5 i L0/
a S ae aT -E+e
— | T(y) dv—— T, (-E+e)=a, == (D
at -IE r a! r P ay T

The differential equations and physically appro-
priate matching conditions which must be satisfied by
velocity and temperature profiles within the fluid are
indicated in Eqs. (8). The platc has a constant and
uniform temperature equal to that of the fluid, 1, up to
the moment considered ¢ = 0. After this initial time, the
impact plate heat diffusion and matching conditions at
the boundaries are given by Eqgs. (9).

y28d—su=U,
(8a)
=0 - u=0,v=0
y2z8 —»T=T,
ir 8b
- (8b)
é o?
T,
y=-E - T, =T, or ¢, =-}, 3
oy | ®
y:O _>TP=7:‘;%=H;$ a};‘

At the fluid-plate interface, the energy conservation
is expressed by the heat flux continuity:

T
=0 EJ'

Ol'

(10)
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3. VELOCITY AND TEMPERATURE PROFILES

The integral equations (5) — (7) are solved together
with proposed velocity and temperature profiles for the
fluid and plate material. The profiles are modelled as high
order polynomials, according to the Karman-Pohlhausen
methodology. The time dependent polynomial coefficients
allow the instantaneous adaptation of the profiles to the
transient boundary conditions. In dimensionless format and
in connection to the boundary conditions (8), the fourth-
order polynomials for the fluid profiles are [3, 4, 5):

1

e a2t e = 11
u U, n-24n" +n , N S (1D
OE;-? =03-(205+%m)[}+wﬁ:
0 (12)
+(20; - 0)p’ +[—03 +%w]ﬁ"
where o= g b é@_s_
ot

In the impact plate case, two distinct temporal
phases were considered separately: (/) the initial phase
of plate penetration, treated as conduction through a
semi-infinite body with imposed thermal condition at

= -E, and (i) after-penetration phase, associated with
the thermal boundary layer development within the fluid
(see fig. 1). In the first phase, the instantaneous
penetration depth is e(t)<£ and the boundary
conditions (9) allow the plate temperature profile
modelling as a third polynomial [6]. After the heat flux
reaches the front plate surface (fig. 1), the boundary
conditions al y = 0 lead to a different temperature profile
inside the plate [7]. The resulting polynomials for the
two different boundary conditions at y=-E are
separately listed below for the constant temperature case
(left) and constant surface heat flux case (right) and
-E<y=<0.

Figures 2a and 2b illustrate selected instantaneous
temperature profiles within the impact plate and the
fluid, and for both plate penetration and post-penetration
phases. As time goes to infinity, the steady-state profiles
are asymptotically reached (e.g., a linear plate tempe-
rature distribution).

T, =const. at y=-F (Fig. la)
ForO0e(t)s £ :

For e(t)=E£:

2 kl
2 ' ] (i1} )
0,=0, +[BA —1+3cupjé+mp(%] +—;[é] (14a)

q., =const. at y=-E (Fig. 1)
For O0ge(n<E:

e.l' ) 5 ]
- 5 _[L _I(E N_] (13b)
g, D& E E} 3\e E

3

For e(t) = £
2 ~3
. y D, (2]
0,=0+(0,~q.,)=+0 | = | +==| =] (14b
=0+, - g2+, (2] +2( 2] a4
T 2
Where 8, = , mpsu -69-'-'-, and
= 2 o
; cifl
{.'I"I.(IE qﬂ

W)

4. ENTROPY GENERATION

Fluid flow and heat transfer imply irreversibility by
viscous dissipation and thermal diffusion and thus
entropy generation in the system. The instantaneous
entropy generation rate per unit mass by viscous
dissipation within a hydrodynamic boundary layer is
given by the following expression [8]:

T 2y

The diffusion of thermal cnergy within a medium
represents another source for entropy generation that
can be quantified, in case of a thermal boundary layer,
by equation (16) [8]:

_k(VTY k1 (o
AT p T? pTz

Within the fluid, entropy is generated by both viscous
dissipation and thermal diffusion. Thercfore, the total
entropy source is given by the sum of the terms in Egs.
(15) and (16), where velocity and temmperature gradients
aleng y-coordinate are deduced from the profiles
specified in Egs. {11) and (12), respectively. In
dimensionless form, the entropy source within the fluid
is given by Eq. (17).

Within the plate, only entropy generation by thermal
diffusion is present. Given the two phases considered
during the transient regime, i.c. the penetration phase and
post-penetration phase, the temperature gradient along

5.}=‘\E—T[a ”} WigK]  (19)

0

T) [WikgK]  (16)
¥,

y-coordinate in Eq. (16) is given by Eq. (13) or Eq. (14).

The dimensionless expressions for the entropy
sources within the plate are given by Egs. (18) and (19),
with particular forms for the two boundary conditions
considered in this study.

The local instantaneous entropy generation within
the fluid and the plate is illustrated in Figures 3a and 3b
for the cases considered in Figures 2a and 2b.
Remarkably, within the fluid the entropy generation by
viscous dissipation is a few orders of magnitude lower
than entropy generation by thermal dissipation, fact that
is supported by the initial assumption regarding the
neglecting of the viscous dissipation in the boundary
layer governing equations. As the system approaches
stcady state conditions (i.e., ¢ —>0o0), the rate of
entropy generation increases within the fluid, while
attaining a straight line of positive slope for the plate.

Due to the large variations in S,,, a logarithmic scale
was used for its representation.
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Fig. 2a. The tempaoral evolution of fluid and plate Fig. 2b. The temporal evolution of fluid and plate
temperature profiles for air-PVC, x. =300 temperature profiles for water-steel, x, =7000
and E. =100 with T, (12 0)=const. (Fig. la). and E. =500 with q,, (¢ 20) = const. (Fig. 1b).
T, =const. at y=-FE (Fig. la) q., =const. at p=-F (Fig. 1b)
Spua =S, + Ssr. 4 with {amn

.S"v =K, 010 +lgr.-,r (2 - 61’ +41'|3)2

2
and gt 4 -—1—,[—2& -2+ 20B +3(20, - 0)B +4[3—e,]g3’
A*(0+0,,) 3 3
For 0<e()<E: _ For 0<e(t)< E:
.. 9K,(Ele) YT . g , T
§ir = i ")z[un(—”EH (182) Stz =Ko -1+2—-—y+5-[}’+EJ (18b)
4(0,+0,,) e (6,+0,) e c
S For e(t)= £ :
or eft)= 4
. K Shf.’r:#’&“"
Sy =% (0, +0.)
(0;;+0;-¢;f')- ; - (19b)
5 272 (19a) x{wn—fj;,+2mﬂ%+mp[%)J
X 93—1+—~(0p+2mp'1—'+mp P4
3 E E
3 ]
Where the constants are: K,Ev'—m‘ K,= 1 & E..k__ 0. = L

Oy (Ig" 2 T«: ] ' [}CJX : > ppEZ nf ](:'sr = T.,,

CONCLUSIONS imposed at the back plate surface (i.c. the one that is not
Two similar mathematical models were developed . Co_l[:l]mm Al e ﬂmd).h .

to characterize the dynamics of steady parallel flows e Syseil Boverning ‘cquations are developed

over a finite thickness plate. Transients are induced by a from the cnergy conservation equations by use of the

step change in either the temperature or the heat flux Karman-Pohlhausen  integral approach and  time-
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dependent polynomial profiles for fuid and plate
temperatures. In this particular paper, the system
dynamics is expressed in terms of the instantancous
entropy generation profiles within the fluid and the plate.
There were included in the analysis imeversibilities by
viscous dissipation and thermal diffusion. Selected fluid-
plate combinations, frequently encountered in practical

applications, were considered to illustrate the system
dynamics: water or air as fluids, steel or PVC as plate
material. Noteworthy, the highest fluid entropy rates
related to the steady-state regimes, when the gradients
weree higher. Moreover, the entropy generation rate
always reached its maximum values at the contact surface
between the fluid and the plate (at y=0).
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Fig. 3a. The temporal evelution of fluid and plate entropy
generation rates for air-PVC, x. =300, £. =100 and

0,, =20 with T,(£20)=const. (Fig. /a).

Fig. 3b. The temporal evolution of fluid and plate entropy
generation rates for water-steel, x, =7000, E, =500 and

0,, =20 with g, (+20)=const. (Fig. Ib).
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