WAVE ITERATIVE PROCESS VALIDATION FOR 3D SPHERICAL METALLIC OBSTACLE SCATTERING

Lecturer Eng. Nicolae LUCANU, PhD¹, Lecturer. Eng. Irinel Valentin PLETEEA PhD¹, Professor Eng. Ion BOGDAN PhD¹, Professor Eng. Henri BAUDRAND PhD²

¹„Gheorghe Asachi” Technical University Iași, E.T.T.I. Faculty
²Institut National Polytechnique Toulouse, E.N.S.E.E.I.H.T.

REZUMAT. Lucrarea prezintă o aplicație a Metodei Iterative Bazată pe Conceptul de Undă (WIP) în cazul studiului difracției unei unde electromagnetice plane pe suprafața unui obstacol metallic 3D. Aplicația este realizată în scopul validării Metodei Iterative în cazul unei probleme clasice de difracție. Se trată cazul unui obstacol difractant sferic. Se studiază convergențele modală și iterativă. Se evaluează densitatea de curent pe suprafața sferei, rezultatele obținute fiind comparate cu soluția analitică exactă disponibilă pentru acest caz particular.

Cuvinte cheie: difracție, undă plană, conceptul de undă, sferă metalică

ABSTRACT. The paper presents an application of the Wave Iterative Process (WIP) in the case of the study of the scattering of an electromagnetic plane wave by a metallic 3D obstacle. The application is made in order to validate the original Iterative Method for a classical metallic obstacle diffraction problem. The case of a spherical scatterer is treated. Modal and iterative convergences are studied. Current density is calculated and compared with the exact solution available for this particular case.

Keywords: scattering, plane wave, wave concept, metallic sphere

1. INTRODUCTION

Recent years have witnessed a great development of the necessary tools able to numerically model, simulate the performance of, and design complex electromagnetic systems. An important class of competing computational electromagnetics approaches is based on the use of iterative methods in solving scattering problems [1], due to the simplicity and high efficiency of these methods.

An important class of numerical methods is based on the analogy between the behaviour of the voltages and currents in an interconnected transmission line network and the behaviour of the electromagnetic fields in a propagation environment. The Transmission Line Matrix [2] (TLM) method formulation was further developed as the FDTLM [3], a symmetrical node being derived from the Maxwell equations, using centred differencing and averaging [4].

The integral formulation of the TLM method is defined in the time domain, spectral domain being also used in the ATLM method [5].

In the same way the integral field equations methods EFIE [6] and MFEI [7] are related to the Finite-Difference Time-Domain FDTD [8] techniques, the TLM method evolved into the Wave Iterative Process (WIP) method, introduced at first by [9].

Among the most recent and the most efficient iterative methods, the Wave Iterative Process (WIP) was developed at first as an instrument for the study of in-guide and planar circuits scattering problems [10]. Due to its combined spectral – real domain formulation issued from the description of boundary conditions and modal behavior and due to its applicability to all range of geometrical dimensions of the scattering obstacle, the Wave Iterative Process is highly recommended for its extension to free space electro-magnetic diffraction studies.

Already successfully tested in many circuit designs [11]-[13], the WCIP has a great potential of development to solving complex shaped structures and multiple obstacle electromagnetic diffraction problems. The method was validated for several 2D scattering structures [14], 3D obstacles being taken into study.

The paper presents a brief review of the principles of the WCIP, wave definitions and scattering operators. The WCIP is then applied to the case of a plane wave incidence upon a 3D metallic spherical obstacle, TE and TM modal functions bases being considered. Spherical coordinates are used to express initial waves of the iterative process. Modal and iterative convergences of the WIP method are investigated and the results given by WCIP are compared with the exact solution available for this particular case.
2. THEORY

The Wave Iterative Process:

Considered the incidence of a wave on the surface S of an obstacle as depicted in Fig. 1, the basic principle of the WCIP is the concept of waves, the incident one A, and the reflected one B, defined from the tangent electric field E, and the incident magnetic tangent field H.

For simplicity reasons, instead of H, the “current density” vector J is preferred. The following relation defines the J vector:

$$n \times \frac{E}{r} = \frac{1}{r} \left(\nabla E - E \nabla \nabla^T \right)$$

where n is the normal versor to the scattering surface, defined in each point.

The waves A and B are defined by (2):

$$\begin{cases}
A = \frac{1}{2 \sqrt{Z_0}} \left(\vec{E} + Z_0 \vec{J} \right) \\
B = \frac{1}{2 \sqrt{Z_0}} \left(\vec{E} - Z_0 \vec{J} \right)
\end{cases}$$

where Z_0 is an arbitrary parameter.

The analytic expression of the iterative process is issued from the continuity and border conditions of the electromagnetic field. In the case of free space scattering, the iterative process is described by (3):

$$\begin{cases}
\vec{B}_n + \vec{B}_0 = \hat{S} (\vec{A}_{n+1} + \vec{A}_n) \\
\vec{A}_n = \hat{\Gamma} \vec{B}_n
\end{cases}$$

where n is the number of the iteration, \hat{S} is the real domain scattering operator, and $\hat{\Gamma}$ is the modal domain scattering operator.

The two scattering operators are given by (4) and (5):

$$\hat{S} = I_S - I_M$$

$$\hat{\Gamma} = \sum_m \left| f_m \right|^2 \frac{1}{1 + Z_0 Y_m} (f_m)$$

where $\{f_m\}$ is a complete orthonormal modal base and Y_m is the modal admittance of the m^{th} mode.

The first equation of (3) is written in the real domain, the second one being written in the spectral domain, and therefore a direct and inverse fast modal (Fourier) transformations (FFT and FFT\(^{-1}\)) are used to pass from one to the other.

Scattering by a Metallic Sphere:

Let us consider the incidence of a z-polarized plane wave on the surface of a metallic spherical obstacle, as depicted in Fig. 3. The radius of the sphere is a.

The incident electromagnetic field is given by:

$$\vec{E}' = E_0 e^{-j\zeta z} \hat{x}$$

$$\vec{H}' = \frac{E_0}{\zeta} e^{-j\zeta x} \hat{y}$$

where $\zeta = \frac{120\pi}{\Omega}$ is the intrinsic space impedance.

Taken into account the geometry of the problem, it is obvious a change of coordinate system type is necessary, spherical coordinates being used.
The following values of the initial current density are obtained:

\[J^i_\rho = 0 \]
\[J^i_\phi = \frac{E_0}{\zeta} \cos \phi \ e^{-j\beta_\rho \cos \theta} \]
\[J^i_\theta = \frac{E_0}{\zeta} \sin \phi \cos \theta \ e^{-j\beta_\rho \cos \theta} \]

where \(\beta_\rho \) are the first order associated Legendre polynomials.

The \(\alpha_m \) coefficient issues from the orthonormation condition of the modal base and is given by:

\[\alpha_m = \frac{2\pi \tau_m}{(m+1)!} \frac{(m+1)}{(m-1)!} \]

where

\[\tau_m = \begin{cases}
2 & \text{for } m = 0 \\
1 & \text{for } m \neq 0
\end{cases} \]

The modal admittances for the TE and TM modes are respectively given by [15]:

\[Y_{mTE}^{TE} = -\frac{j}{Z_0} \frac{H_m^{(2)}(ka)}{H_m^{(2)}(ka)} \]
\[Y_{mTM}^{TM} = \frac{j}{Z_0} \frac{H_m^{(2)}(ka)}{H_m^{(2)}(ka)} \]

where \(H_m^{(2)} \) is the second kind Hankel function.

The existence of the two mode types determines (5) to be rewritten as:

\[\tilde{\Gamma} = \sum_m |f_m|^{1-Z_{mTE}^{TE}}(j\tau_m) | + \sum_m |f_m|^{1-Z_{mTM}^{TM}}(j\tau_m) | \]

All the necessary elements needed to run the iterative process are now defined.

The case of the scattering of a plane wave by a metallic sphere is among the very few that have an exact analytical solution given by Harrington [15]. The values of the two components of the current density on the obstacle’s surface have the following expressions:

\[J_\phi = \frac{j}{\zeta} \sum_{m} \frac{\sin \theta P_m'(\cos \theta)}{H_m^{(2)}(ka)} + \frac{P_m'(\cos \theta)}{\sin \theta H_m^{(2)}(ka)} \]
\[J_\theta = \frac{j}{\zeta} \sum_{m} \frac{\sin \phi P_m'(\cos \theta)}{H_m^{(2)}(ka)} + \frac{P_m'(\cos \theta)}{\sin \theta H_m^{(2)}(ka)} \]

We will present in Paragraph 3 the comparison between the current density given by the use of the Wave Concept Iterative Process with the one issued by applying (19) and (20). This will allow us to validate the iterative method for this type of scattering obstacle.

3. NUMERICAL RESULTS

Let us consider the incidence of a 10 GHz plane wave upon the surface of a metallic sphere. The first investigated issue is the iterative convergence of the WIP. Fig. 4 presents the results obtained for the point \(\theta = \pi / 2 \). As expected, the smaller the geometrical dimension of the problem, the larger the number of iterations needed to achieve the convergence.
The comparison between the WCIP and the exact analytic solution [15] is depicted in Fig. 5 for a radius \(a = \lambda \), in Fig. 6 for \(a = 10\lambda \), and, respectively, in Fig. 7 for \(a = \lambda / 10 \).

Due to the symmetry of the problem, the current density is evaluated for \(\theta \in [0, \pi] \).

One can notice the excellent correspondence between the WCIP results and the exact solution [15], allowing us to conclude that WCIP is validated for this case.

4. CONCLUSION

An application of the Wave Concept Iterative Process was made, for a spherical scattering metallic obstacle. The WCIP was proved convergent for small and for large geometrical dimensions of the scatterers, in terms of wavelength.

The results given by WCIP for the scattering of a plane wave by a sphere are practically coincident with the exact analytic solution available for this particular structure. We can conclude that WCIP was successfully validated for the 3D spherical diffraction structure, opening the path of further free space scattering obstacles study.

5. ACKNOWLEDGEMENT

This paper was supported by the project PERFORM-ERA "Postdoctoral Performance for Integration in the European Research Area" (ID-57649), financed by the European Social Fund and the Romanian Government.
WAVE ITERATIVE PROCESS VALIDATION FOR 3D SPHERICAL METALLIC OBSTACLE SCATTERING

BIBLIOGRAPHY

About the authors

Lecturer. Eng. Nicolae LUCANU, PhD
“Gheorghe Asachi” Technical University Iasi, Faculty of Electronics, Telecommunications, and Information Technology
email:nlucanu@etti.tuiasi.ro

Nicolae LUCANU received an engineer degree in Electronics and Telecommunications at the Technical University “Gh. Asachi” Iasi Romania in 1994. He holds a MSc degree in Microwaves and Optical Technologies from ENSEEIHT, INP Toulouse France (1996), and a PhD (2001) from the same institution. He is a lecturer at the Faculty of Electronics, Telecommunications and Information Technology at the Technical University “Gh. Asachi” Iasi, teaching the Microwaves Techniques course. His main area of research interest is the numerical modeling of electromagnetic wave scattering.

Lecturer. Eng. Irinel Valentin PLETEA, PhD
“Gheorghe Asachi” Technical University Iasi, Faculty of Electronics, Telecommunications, and Information Technology
email:ivpletea@etti.tuiasi.ro

Irinel Valentin PLETEA graduated the Faculty of Electronics and Telecommunications of the “Gheorghe Asachi” Technical University of Iasi in 1998 and got the PhD degree from the same university in 2005. Being presently is lecturer at the same faculty at the Department of Applied Electronics and Intelligent System. His research interests are in the areas of, power electronics, modeling and simulation and renewable energy.

Prof. Eng. Ion BOGDAN, PhD
“Gheorghe Asachi” Technical University Iasi, Faculty of Electronics, Telecommunications, and Information Technology
email:bogdani@etti.tuiasi.ro

Prof Ion BOGDAN received a degree in electrical engineering in 1974 from the “Gheorghe Asachi” Polytechnic Institute of Iasi, Romania and a PhD title in electrical and electronic measurements from the same institution. He served as an assistant, a lecturer, and an assistant-professor in the Telecommunication department of the “Gheorghe Asachi” Technical University of Iasi, where he is now a full professor and a PhD adviser, teaching courses on Antennas and propagation, Mobile communications, and Radio resource management in cellular networks. He conducts researches on electromagnetic wave propagation, wireless channel modeling and simulation, radio resource management.
Prof. Eng. **Henri BAUDRAND**, PhD
Institut National Polytechnique de Toulouse, France, Ecole Nationale Superieure d’Electronique, d’Electrotechnique, d’Informatique, d’Hydraulique, et des Telecommunications, Laboratoire de Plasma et Conversion d’Energie
e-mail: henri.baudrand@laplace.univ-tlse.fr

Professor Emeritus at the ENSEEIHT of National Polytechnic Institute of Toulouse France is specialized in Modeling of Passive and Active Circuits and Antennas. He is the author and co-author of three books. He is Fellow Member of the IEEE Society, Fellow Member of “Electromagnetism Academy” and Senior Member of IEE Society. He was President of URSI France commission B for 6 years (1993-1999), President of IEEE-MTT-ED French chapter (1996-2002), and President of International Comity of OHD (Hertzian Optics and Dielectrics) between 2000 and 2004. He is awarded “Officier des Palmes Academiques” and Doctor Honoris Causa of the Technical University “Gh. Asachi” of Iasi Romania.