THE INFLUENCE OF ENVIRONMENTAL IODINE DEFICIENCY ON THE BREAST

Dr. Mihaela AVRAM1, Dimitrios Koukoulas2, Asistent dr. Iulian AVRAM1,3, Asistent dr. Florina Pârv1, T. Ciocărlie1, Asistent dr. V. Moga1, S. dr. Ada Cean4, Călin Julean4, Asistent univ. dr. Florentina Cădariu1

1 University of Medicine and Pharmacy, Timișoara, 2 City Hospital, Lugoj
3 Klinik fur Allgemein-, Viszeral- und Thoraxchirurgie, Caritasklinikum, Saarbrucken, Germany
4 Banat’s University of Agricultural Sciences and Veterinary Medicine of Timișoara

1. INTRODUCTION

Lack of iodine is an important health problem nowadays. Its main causes are lack of intake due to low environmental existence and the occurrence of substances that have an ant iodine effect. For the past years the role of iodine in the development of breast diseases has been studied, low levels of iodine contributing to the apparition of breast tumors, including cancer. Its potential in treating breast cancer has been proved [1]. Although the contribution of iodine to breast health is certain, little data is known about its role in breast development. The effect of iodine deprivation on the development of the brain and the general growth of infants and children has been wildly studied, but no reference has been found about its effects on breast maturation [2,3,4].

2. METHODOLOGY

The aim of our study was to observe the effect of low iodine intake on the development of breast tissue. We conducted an experiment on 12 Swiss-NMRI female virgin mice, 3 weeks of age. For 4 weeks 10 mice were fed a very low iodine diet and 2 mice got normal diet (control group).

The very low iodine diet was made by combining the special feeding formula with a drinking solution of sodium perchlorate (400 mg/100 ml). The feeding formula (Table 1) was prepared using as a start point Dr Astwood’s nr. 30 diet [5]. This diet provides 50% (100 μg iodine/kg) of necessary iodine for mice. The sodium perchlorate used additionally reduced the iodine intake by 50%. By this method the mice received 25% of their recommended iodine intake.

The experiment was done respecting the European rights of laboratory animals. After 4 weeks the prelevation of the mammary glands was done in general anesthesia, at the end of the experiment for euthanizing the small mammals, cervical dislocation was used, in order to avoid producing pain.

The mammary glands were analyzed in the Department Of Pathology, Faculty of Medicine, Timișoara.

We conducted an experiment on 12 Swiss-NMRI female virgin mice, 3 weeks of age. For 4 weeks 10 mice were fed a very low iodine diet and 2 mice got normal diet (control group).

The very low iodine diet was made by combining the special feeding formula with a drinking solution of sodium perchlorate (400 mg/100 ml). The feeding formula (Table 1) was prepared using as a start point Dr Astwood’s nr. 30 diet [5]. This diet provides 50% (100 μg iodine/kg) of necessary iodine for mice. The sodium perchlorate used additionally reduced the iodine intake by 50%. By this method the mice received 25% of their recommended iodine intake.

The experiment was done respecting the European rights of laboratory animals. After 4 weeks the prelevation of the mammary glands was done in general anesthesia, at the end of the experiment for euthanizing the small mammals, cervical dislocation was used, in order to avoid producing pain.

The mammary glands were analyzed in the Department Of Pathology, Faculty of Medicine, Timișoara.
THE INFLUENCE OF ENVIRONMENTAL IODINE DEFICIENCY ON THE BREAST

Table 1. Low iodine feeding formula

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity (for 1 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat gluten flour</td>
<td>299.68 g</td>
</tr>
<tr>
<td>Casein</td>
<td>100 g</td>
</tr>
<tr>
<td>Corn oil</td>
<td>80 g</td>
</tr>
<tr>
<td>Wheat flour</td>
<td>100 g</td>
</tr>
<tr>
<td>Sucrose</td>
<td>370 g</td>
</tr>
<tr>
<td>Mineral mix (1 kg contains: 150 g K2HPO4, 50 g MgSO4, 499.75 g NaCl, 1 g FeSO4, 0.05 g CuSO4, 0.05 g MnSO4)</td>
<td>50 g</td>
</tr>
<tr>
<td>Vitamin mix Vit foss 8074</td>
<td>0.32 g</td>
</tr>
</tbody>
</table>

3. RESULTS AND DISCUSSIONS

The young female mice, which received diet providing 25% of their needs, had hypoplasia lesions in their mammary glands, all mice in the lot (rare glandular structures, rare ductal structures) (Fig. 1, Fig. 2). The mice in the control group presented normal breast tissues (Fig. 3).

![Fig. 1. Rare gland tissue, fatty stroma.](image1.png)

![Fig. 2. Rare glandular structures, rare ductal structures, fatty stroma.](image2.png)

![Fig. 3. Normal breast tissue in control group.](image3.png)

The lack of iodine produced a poor development of mammary tissues in young female mice. Because of lack of data in literature we can not compare our results to other studies.

Nowadays there are many regions in which the intake of iodine is not sufficient due to environmental lack of iodine. There also occur substances that impair the absorption of iodine. The sodium perchlorate, responsible for inhibiting gastric absorption of iodine, we used in this experiment might occur naturally in arid areas or in water, but its main source in the environment in artificial [6, 7]. It is used in airbags, pretensioned seatbelts, monitoring pressure systems in tires, batteries etc. It is the key ingredient in rocket fuel. The biggest contamination with perchlorate determined until now is in California. This perchlorate comes from the battle rockets tested in the military units of this state. In that region the values of perchlorate in water are 7.5 times higher than normal [8].

Taking the above data into consideration we believe that the conditions artificially produced for the mice can occur for people living in certain environments too. So breast development in girls from certain regions might be negatively influenced.

4. CONCLUSIONS

In our study lot we emphasized the fact that lack of iodine intake in young mammals prevents normal development of breast tissues. Further data on bigger study lots is needed, as well as studies on breast maturation in young girls from iodine deprived environments.

REFERENCES


